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EDITORIAL

Comparative, complementary and relevant: the immunological basis of ovine lung

allergic responses

The UK has one of the highest prevalence rates for asthma in
the world with an estimated 5.1 million people—1in 13 adultsand
1 in 8 children — currently being treated. The high prevalence of
this condition is reflected in the 74 000 emergency hospital ad-
missions for asthma each year, and its life-threatening nature in
the 1500 deaths/year that occur as a consequence of this condi-
tion [1]. The incidence appears to be increasing with the number
of new cases of asthma each year being three to four times higher
in adults and six times higher in children than it was 25 years
ago [1].

Characterized by variable and reversible airway obstruc-
tion, eosinophilic airway inflammation and bronchial hyper-
reactivity [2], allergic asthma is also strongly associated with
atopy, characterized by increased levels of total IgE and IgE
specific for common environmental allergens.

Our current level of understanding of the immunologic basis
of allergy has benefited from studies using animal model
systems, particularly those based on mice. In essence, from the
original discovery by Mosmann et al. that mouse CD4* T cells
could be characterized into two populations on the basis of their
cytokine profiles [3,4], and the discovery that these profiles
importantly influence disease outcome following protozoal
infection [5, 6] we are now able to recognize that many of the
features of atopic asthma are driven by Th2 cytokines. Such
model systems have thus played a fundamental role in defining
our current level of understanding of allergic asthma and will
continue to do so.

Over the last 8 years or so there have been a number of studies
that have focused on the attendant functional and pathologic
features of experimentally-induced allergic airway disease in
mice. These studies have quite naturally focused on similarities,
where they exist, with the human phenotype and in conjunction
with the ability to dissect the fine aspects of the immune and
inflammatory response have offered an important insight into
possible mechanisms underlying human disease pathogenesis.

However, as with any animal model system, it is important to
be aware of the limits of the system as these limits define the
validity of any extrapolations made beyond the species under
study.

This caveat is particularly relevant to studies directed at
understanding the mechanisms underlying airway hyper-
responsiveness. Of the wide variety of agents that induce bron-
chospasm in asthmatics, only cholinergic agonists, serotonin
and endothelins evoke bronchospasm in mice. Similarly, mast
cells, recognized as key effector cells in human asthma [7] are
present in only scant numbers in mouse lung tissue [8] and
indeed the in vitro response of murine mast cells to a variety of
stimuli often fails to mimic the response of human mast cells to
the same stimuli [9, 10].

In contrast to human airways, mouse airways lack a bronchial
circulation, are only sparsely furnished with afferent nerves and
have no relaxant innervation, which in effect means that mice

282

will fail to cough in response to stimuli and may fail to mimic
other clinically relevant features of asthma such as the bronch-
oconstrictor effect of deep inspiration.

Whilst it is important to appreciate that no single animal
model system will faithfully replicate all the characteristic fea-
tures of asthma, it is equally important that due regard is paid
to the comparative species in their airway response to allergic
inflammation as it is worth speculating that further understand-
ing of such diversity will hold clues to unravelling species-
specific mechanisms.

In this issue of Clinical and Experimental Allergy, Bischoff
et al. demonstrate, using a local lung challenge model in sensi-
tized sheep, an allergic response to house dust mite (HDM) [11]
the characteristics of which hold ‘similarities to human asth-
matic disease’ and indicate the potential of the model ‘as a
useful tool for studies of the immunological and physiological
basis of allergic asthma’. Whilst undoubtedly indicating an
underlying confidence in the relevance of this model, it is im-
portant to consider these claims in relation to both the current
study and the extensive history of using sheep to model allergic
asthma.

In a proportion of sheep having demonstrable skin test re-
activity to A. suum extract, immediate bronchospasm and pul-
monary hyperinflation is elicited in the conscious animal on
exposure to aerosolized antigen [12]. A further proportion of
these ‘early responders’, referred to as ‘dual-responders’ go on
to develop a late bronchospastic response at 7-8 h [13] and non-
specific airway responsiveness at 24 h [14], the latter persisting
for 14 days [15] post-antigen exposure.

The model has been extensively characterized with the early
response linked to degranulation of mast cells and release of
histamine [16] with attendant immediate bronchospastic effects
on airway calibre and increased bronchial blood flow [17].
Indeed, pre-emptive corticosteroid treatment [18], mast cell sta-
bilizers [19, 20], calcium antagonists [21], and heparin [22-25]
significantly attenuate the early response. In the latter instance
the effect is confined to sheep that only have an early response
[26]. The blocking effect is dependant on the molecular weight
(MW) of the heparin [27-29] and may be mediated through
inhibition of the inositol triphosphate pathway [26] the predom-
inant second messenger in early responders.

Dual responders are distinguished from early responders in
developing a more pronounced inflammatory response over
the next 24 h. Although in numerical terms the inflammation
is dominated by neutrophils in both groups [30] there is an
associated significant increase in the number of eosinophils in
the airway wall and bronchoalveolar space of the dual respond-
ers only [30, 31]. Reactive oxygen species are also increased in
the airway epithelium [31]. The inflammation, which can be
abrogated by corticosteroids [13], specific targeting of adhes-
ion molecules expressed by leucocytes [15,32-35], and anti-
proteases [36-39] is accompanied by a visible increase in the
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quantity of tracheal mucus and a significant and prolonged
decrease in tracheal mucus velocity [40, 41]. Amongst the medi-
ators released as a consequence of initial exposure to antigen,
leukotrienes and prostaglandins [16,42-53], platelet activating
factor [54, 55], tissue kallikrein [56] and bradykinin [57, 58] are
believed to contribute towards the physiologic expression of the
late response.

The question arises as to whether such pronounced functional
effects and attendant evidence of inflammation are reflected
in histopathological evidence of abnormality. Studies by Chen
et al. demonstrated that challenge with 4. suum antigen was
not associated with profound effects on the cellular compos-
ition of the lower respiratory tract as assessed 14days after
challenge [59]. No significant difference between responders
and non-responders was observed with respect to the numerical
density of mast cells and eosinophils, or the observed degree of
degranulation of mast cells although responders had a signifi-
cant increase in the numerical density of mast cell secretory
granules [59]. Similarly, although hypersensitive sheep had a
thinner epithelium in medium bronchi and bronchioles, fewer
goblet cells in bronchioles, and greater gland area at most
airway levels, changes were generally mild [60].

Given the acute and intense nature of the allergen challenge
it is perhaps not surprising that the chronic and pronounced
changes that typify asthma, namely thickening of the lamina
reticularis, mucous gland hypertrophy, goblet and epithelial cell
hypertrophy and hyperplasia, smooth muscle hypertrophy and
pronounced eosinophil infiltration are not present to any sig-
nificant degree. A chronic antigenic challenge protocol, involv-
ing intratracheal instillation every 2weeks over a period of
9 months was employed by Bosse et al. [61]. These researchers
were able to document an increase in lung resistance and func-
tional residual capacity, and, in the bronchoalveolar space, in-
creased eosinophils and histamine, and depressed cAMP [61].
Whether such effects reflected underlying structural change in
the airways was not discussed.

So where does the experimental model presented by Bischoff
et al. lie in relation to the considerable volume of published
literature that surrounds existing ovine models of human aller-
gic asthma?

In the first instance, these authors have sought to define the
immunological features of the lung allergic response. In this
regard the use of house dust mite represents a welcome and
shrewd initiative in that, in addition to the well-recognized
relevance of this allergen to human asthma, sensitization and
challenge with an allergen to which sheep would be unlikely to
be naturally exposed facilitates interpretation of immunological
and cellular responses in relation to a defined exposure history.
This contrasts with the situation relating to 4. suum where
allergic skin reactivity can develop in sheep unlikely to have
had prior contact with this antigen [62]. Whether this latter
reactivity represents cross-reaction with similar mite or nema-
tode antigens to which the sheep have been exposed is unknown.

In the second instance these authors adopt a local lung chal-
lenge protocol to evaluate pulmonary responses to allergen.
Segmental approaches have hitherto proved valuable in the
context of defining, at functional, cellular and immune levels,
the local lung response to antigen challenge in both experimen-
tal animals and in humans [63-71].

Systemic immunization with 50 pg HDM in Alum resulted in
the development of allergic reactivity, on the basis of HDM-
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specific IgE response, in 6 out of 10 sheep. Forty-eight hours
after local lung challenge with HDM antigen, a significant
increase in the level of eosinophils in blood, bronchoalveolar
lavage and lung tissue occurred [11]. Similar trends, which
attained significance in the case of bronchoalveolar eosinophil
influx, were apparent for non-allergic sheep following challenge
[11]. The increase in peribronchial eosinophils and activated
CD4" T cells is notable both when viewed in the context of
human asthma and in relation to the aforementioned observa-
tions by Chen et al. that no such infiltrates were apparent
14 days after challenge with 4. suum antigen [59].

One aspect of this and other studies is the tendency to pre-
select groups on the basis of given functional responses, whether
these relate to immunological, physiological or clinical end-
points. Whilst such groupings undoubtedly facilitate robust
statistical scrutiny and thus help define the mechanisms under-
lying observed differences, they do tend to feed the notion that
dichotomous responses are a feature of the wider population
rather than there being a continuum of response. Subjective
evaluation of the data presented by Bischoff et al. [11] suggests
that HDM sensitization and challenge generates a continuum
rather than dichotomous cellular and immunological response
in sheep.

It is well recognized that, in common with other species, ovine
mast cell populations are heterogenous with respect to mor-
phology, histochemical characteristics and granule proteinase
content [72,73]. As the predominant cell type involved in the
immediate airway response to allergen and the putative archi-
tect of subsequent eosinophilic inflammation, dynamic flux in
the relative proportions of phenotypically distinct mast cell
populations may have important bearing on lung allergic res-
ponses. It is therefore important to consider what factors are
likely to play a role in influencing the makeup of mast cell
populations in the lung particularly in relation to existing and
proposed ovine models of asthma.

Prior exposure to nematode antigen will have a profound
bearing on pulmonary mast cell populations. Indeed, the path-
ology of patent lungworm (Dictyocaulus spp.) infection in ru-
minants is characterized by chronic catarrhal bronchitis and
bronchiolitis, bronchial epithelial and mucous cell hyperplasia,
increased peribronchiolar fibrous tissue and smooth muscle,
and prominent eosinophil and mast cell infiltrates [74], and the
local lung response to recombinant lungworm antigen in sensi-
tized sheep is characterized by increased ratios of sheep mast
cell proteinase-1-expressing cells and tryptase-expressing cells,
to toluidine blue positive cells in airways [71].

Wherein nematode infections are ubiquitous within small
ruminants, it is tempting to suggest that such infections could
play a predominant role in shaping pulmonary mast cell popu-
lations, particularly at the mucosal interface.

Similarly, the potential role of central neural networks in
mediating dynamic flux in mucosal mast cell populations
should be borne in mind given the close morphological
association that exists between mast cells and neuropeptide-
containing nerves [75] and the evidence that suggests that
epithelium, nerves and mast cells do indeed interact in a func-
tional manner in the lung [76,77]. Certainly, the observation
that neuropeptides are capable of lowering the threshold para-
site antigen concentration for mast cell degranulation in the
sheep [78] adds credence to the notion that mechanisms exist
to tailor effector responses to the nature and level of parasitic
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insult and that such prior history is pertinent to interpreting
‘allergic’ mechanisms that have their evolutionary roots inter-
twined in parasite : host defence issues.

Notwithstanding the potential influence of these and other

factors in the response of sheep to sensitization and challenge
with allergen it is encouraging that steps are finally being taken

to

characterize the immunological aspects of the ovine lung

allergic response. Indeed, such progress will presumably look

to

take advantage of the sweeping progress in genomic and

proteomic technology that will undoubtedly impinge on our
ability to more comprehensively dissect comparative disease
mechanisms over the next several years. Whether such steps
will fully validate this particular model at the functional and
pathological level remains to be seen; however, it is with some
anticipation that we can look forward to this story unfold.
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